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Abstract
The magnetism and superconductivity of the new heavy fermion compounds
CeTIn5 (T = Co, Rh and Ir) are investigated by applying fluctuation exchange
approximation to an orbital degenerate Hubbard model. The superconducting
phase with dx2−y2 symmetry is found to appear next to the antiferromagnetic
phase with increasing the orbital splitting energy. The present theory suggests
that the orbital splitting energy plays a key role as a controlling parameter for
the quantum phase transitions in the heavy fermion system.

1. Introduction

Superconductivity in strongly correlated electron systems has been one of the central
issues in the research field of condensed matter physics since the pioneering discovery
of superconductivity in CeCu2Si2 [1]. The subsequent discovery of high-temperature
superconductivity in cuprates has accelerated further investigations of this subject, leading
to unambiguous identification of the unconventional nature of dx2−y2 -wave pairing in
cuprates. Recently, new heavy fermion compounds CeTIn5 (T = Rh, Ir, and Co) have been
discovered [2]. Among them, CeRhIn5 exhibits an antiferromagnetic (AFM) transition at a
Néel temperature TN = 3.8 K and becomes superconducting only under hydrostatic pressures
greater than 15 kbar. On the other hand, both CeIrIn5 and CeCoIn5 are superconducting at
ambient pressure with transition temperatures Tc = 0.4 and 2.3 K respectively. The Tc of
CeCoIn5 is the highest among those yet observed for heavy fermion superconductors [3].

Reflecting the fact that CeTIn5 has HoCoGa5-type tetragonal crystal structure, quasi
two-dimensional Fermi surfaces have been observed in de Haas–van Alphen experiments
for the compounds, consistent with the band-structure calculation results [4]. Concerning the
superconducting state, nuclear relaxation rate in CeTIn5 exhibits T 3 behaviour below Tc [5] and
thermal conductivity in CeCoIn5 is found to include a component with four-fold symmetry [6],
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strongly suggesting dx2−y2 -wave pairing in the superconducting phase of CeTIn5. Furthermore,
it has been shown that in the CeRh1−x Irx In5 alloy system the superconducting phase appears
in the neighbourhood of the AFM phase [7]. A natural consequence of these experimental
results is that superconductivity in CeTIn5 compounds is induced by AFM spin fluctuations,
similarly to high-Tc superconductivity.

In spite of the similarities mentioned above, we should emphasize here several differences
between heavy fermion superconductors such as CeTIn5 and high-Tc cuprates. First of all,
relevant electrons in high-Tc superconductors are mostly itinerant 3d electrons, while for heavy
fermion superconductors, the relevant ones are f electrons, which are mostly localized and
their dispersion is mainly determined by hybridization with conduction electrons. Another
important difference concerns the electronic states relevant to low-energy physics. For
cuprates, it is widely recognized that a single-band model for holes in dx2−y2 orbitals on the
square lattice is a good starting point. On the other hand, for heavy fermion superconductors,
several Fermi surfaces are observed in general. Such complex electronic states may eventually
be traced back to the orbital degeneracy and relatively weak crystalline electric field (CEF)
effect of f electrons compared with the 3d electrons in the CuO2 plane. This implies that
construction of a realistic microscopic model is not easy for heavy fermion systems. Therefore,
up to now, most theoretical investigations of superconductivity in heavy fermion systems have
been restricted to a phenomenological level.

In this paper we discuss the effect of orbital fluctuations on superconductivity based on
a microscopic theory applied to a microscopic model. In the next section we introduce an
orbital degenerate model including important characteristics of CeTIn5. Then, in order to
study the superconducting transition induced by spin and/or orbital fluctuations, we develop
a strong-coupling theory using fluctuation exchange (FLEX) approximation [8] in which spin
and orbital fluctuations as well as the single-particle spectrum are determined self-consistently.
Finally, we discuss experimental results for CeTIn5 in the light of the present theory.

2. Model Hamiltonian

In order to introduce a minimal model for f-electron systems, we start from the local basis
for a Ce3+ ion. Among 14-fold degenerate 4f electronic states, due to the effect of strong
spin–orbit coupling, only the j = 5/2 sextet effectively contributes to the low-energy
excitations ( j is total angular momentum). Under the cubic CEF, this sextet is further
split into a �7 doublet and a �8 quartet, where the corresponding eigenstates are given by
|�7±〉 = √

1/6| ± 5/2〉 − √
5/6| ∓ 3/2〉, |�(1)

8±〉 = √
5/6| ± 5/2〉 +

√
1/6| ∓ 3/2〉, and

|�(2)

8±〉 = | ± 1/2〉. Here + and − in the subscripts denote ‘pseudo-spin’ up and down in each
Kramers doublet, respectively. For simplicity, we consider only |�8〉 states, further split into
two Kramers doublets as |�(1)

8±〉 and |�(2)
8±〉 under the additional tetragonal CEF. Note that |�(1)

8±〉
and |�(2)

8±〉 belong to �7 and �6 irreducible representations respectively in the tetragonal system.
The validity of this assumption for CeTIn5 will be discussed later in this paper, but here we
stress that the Hamiltonian constructed from the �8 quartet is the simplest model including the
essential physics of interplay between spin and orbital fluctuations.

In order to consider itinerant features of 4f electrons, we take into account nearest-
neighbour hopping of f electrons by the tight-binding method [9]. It should be noted that
the matrix elements of the nearest-neighbour hopping depend not only on the orbital but also
on the hopping direction, since the forms of wavefunctions of the |�(1)

8±〉 and |�(2)

8±〉 states are
different from each other. We can determine the hopping matrix elements by assuming that the
overlap integral through the σ bond (ffσ ) is dominant. Since CeTIn5 has a tetragonal crystal
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structure and quasi two-dimensional Fermi surfaces have been experimentally observed [4, 10],
it is natural to consider the two-dimensional square lattice composed of Ce3+ ions. Although
the hybridization of f electrons with In 5p electronic states may be the main source of kinetic
energy for f electrons, in the present scheme such an effect is considered as the effective
hopping amplitude for f quasi-particles, after the p-electron degrees of freedom are integrated
out.

By further adding the on-site Coulomb interaction terms among f electrons, the effective
Hamiltonian with orbital degeneracy is given by

H =
∑

iaττ ′σ
ta
ττ ′ f †

iτσ fi+aτ ′σ − ε
∑

i

(ni1σ − ni2σ )/2 + U
∑
iτ

niτ↑niτ↓ + U ′ ∑
iσσ ′

ni1σ ni2σ ′ , (1)

where fiτσ is the annihilation operator for an f electron with pseudo-spin σ in the τ -orbital
state �

(τ)

8 at site i, a is the vector connecting nearest-neighbour sites, and niτσ = f †
iτσ fiτσ .

The first term represents the nearest-neighbour hopping of f electrons with the amplitude ta
ττ ′

between τ and τ ′ orbitals along the a-direction, given by tx
11 = −√

3tx
12 = −√

3tx
21 = 3tx

22 = 1
for a = x and ty

11 = √
3ty

12 = √
3ty

21 = 3ty
22 = 1 for a = y respectively, in energy units,

where tx
11 = 1. The second term denotes the tetragonal CEF, leading to an energy splitting ε

between the two orbitals. In the third and fourth terms, U and U ′ are the intra- and interorbital
Coulomb interactions respectively. Due to the rotational invariance in the orbital space for
the interaction part, U ′ should be equal to U , when we ignore Hund rule coupling, since it is
irrelevant in the large-U limit for the quarter-filling case with one f-electron per site. Thus,
in this paper we restrict ourselves to the case of U = U ′. Note also that in the quarter-filling
case, the present model is virtually reduced to the half-filled single-orbital Hubbard model in
the limit of ε = ∞.

3. FLEX approximation

In our previous work we developed a weak-coupling theory for superconductivity based on the
same orbital degenerate model described above, using the static spin and orbital fluctuations
obtained within the random phase approximation (RPA) [11]. Various superconducting phases
have been found around varieties of ordered phases, whose boundaries are determined by
the RPA instability. In order to develop a more sophisticated theory, we should include
effects of (1) mode–mode coupling and (2) quasi-particle damping, neglected in the previous
work. Regarding (1), the RPA does not incorporate effects of mode–mode coupling between
fluctuations, but the mode–mode coupling modifies significantly the temperature and frequency
dependences of spin and orbital fluctuations. Concerning (2), within the weak-coupling theory
for superconductivity, damping of quasi-particles by the scattering due to spin and orbital
fluctuations is not taken into account, which leads to the suppression of superconductivity.
Therefore, the weak-coupling theory generally overestimates the region of the superconducting
phase.

In the present paper we apply the FLEX approximation [8] to the orbital degenerate model
discussed in the preceding section. The FLEX approximation has the following two features:

(1) It is a kind of mode–mode coupling theory, where spin and orbital fluctuations and the
spectra of f electrons are self-consistently determined through the FLEX self-energy.

(2) It provides the Dyson–Gorkov equation where the normal and anomalous self-energies
are obtained on an equal footing.

Here we emphasize that the FLEX approximation has been successful in allowing us
to understand consistently the normal and superconducting states of high-Tc cuprates, in
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particular with reasonable estimation of Tc [12]. Therefore, it is interesting to apply the
FLEX approximation to the orbital degenerate model to understand its properties concerning
superconductivity.

In the doubly degenerate case, the Green functions for f electrons form a 2 × 2 matrix and
they follow the Dyson–Gorkov equations

Ĝ(k) = Ĝ(0)(k) + Ĝ(0)(k)�̂(1)(k) Ĝ(k), (2)

where Ĝ(0)(k) is a matrix for the non-interacting Green function. Within the FLEX
approximation, components of the self-energy matrix �

(1)
ml (k) are given by

�
(1)
ml (k) = T

N0

∑
q

∑
µν

V eff
µm,νl (q)Gµν(k − q), (3)

with

V eff
µm,νl (q) = [ 3

2 Û sχ̂ s(q)Û s + 1
2 Û oχ̂o(q)Û o

− 1
4 (Û s + Û o)χ̂(q)(Û s + Û o) + 3

2 Û s − 1
2 Û o]µm,νl , (4)

where the first and second terms of V eff
µm,νl(q) give contributions of the spin and orbital

fluctuations respectively to the self-energy.
In equation (4), χ̂ s(q) and χ̂o(q) are the 4×4 matrices of the spin and orbital fluctuations,

given by

χ̂ s(q) = [1̂ − Û sχ̂(q)]−1χ̂(q), (5)

χ̂o(q) = [1̂ + Û oχ̂(q)]−1χ̂(q), (6)

where the matrix element of the irreducible susceptibility χ i j,st(q) is given by

χ i j,st(q) = − T

N0

∑
k

Gsi (k + q)G jt(k). (7)

For the susceptibility matrices, the labels of rows and columns appear in the order 11,22, 12 and
21 for pairs of orbital indices 1 and 2. In these expressions, T is a temperature, N0 is the number
of unit cells and abbreviations k = (k, iωn) and q = (q, i	n) (ωn = (2n +1)πT,	n = 2nπT )
are used. The interaction matrices Û s and Û o are given by

Û s =



U 0 0 0
0 U 0 0
0 0 U ′ 0
0 0 0 U ′


 , Û o =




U 2U ′ 0 0
2U ′ U 0 0

0 0 −U ′ 0
0 0 0 −U ′


 .

By solving the self-consistent equations, the spin and orbital fluctuations and the Green
functions for f electrons are determined simultaneously.

In order to discuss superconductivity, it is necessary to calculate the anomalous self-
energy. The matrix element of the anomalous self-energy �

(2)
ml (k) is obtained by the functional

derivative of the thermodynamic potential with respect to the anomalous Green function as
follows

�
(2)

ml (k) = T

N0

∑
q

∑
µν

V ξ

µm,lν(q)Fµν(k − q), (8)

with

F̂(k) = Ĝ(k)�̂(2)(k)Ĝ(−k), (9)
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Figure 1. (a) Spin and (b) orbital susceptibilities in q space for ε = 0; (c) and (d) are for ε = 2.

where the matrix elements of the effective pairing interactions for spin-singlet and spin-triplet
channels are given, respectively, by

V S
µm,lν (q) = [− 3

2 Û sχ̂ s(q)Û s + 1
2 Û oχ̂o(q)Û o − 1

2 (Û s + Û o)]µm,lν , (10)

V T
µm,lν (q) = [ 1

2 Û sχ̂ s(q)Û s + 1
2 Û oχ̂o(q)Û o − 1

2 (Û s + Û o)]µm,lν . (11)

The Tc is obtained as the temperature at which the maximum eigenvalue of equation (8)
becomes unity. As already pointed out in the previous works based on the RPA [11, 13], one
can see from these effective pairing interactions that developments of both spin and orbital
fluctuations have a destructive interference for the singlet channel, while they are constructive
for the triplet one.

4. Calculated results

The FLEX calculation is numerically carried out for each value of ε at fixed parameter
values of U = U ′ = 4 and n = 1 corresponding to one f-electron density per site. All
summations involved in the above self-consistent equations are performed using the fast Fourier
transformation algorithm for the k-space with 32 × 32 meshes in the first Brillouin zone and
for a Matsubara frequency sum with energy cut-off five times larger than the relevant band
width. In figure 1, q dependences of the principal components of χ̂ s(q, 0) and χ̂o(q, 0) are
shown for a fixed temperature T = 0.02 for different level splittings ε: the upper panel for
ε = 0 and the lower panel for ε = 2. For ε = 0, corresponding to the orbitally degenerate case,
the AFM spin fluctuation in the τ = 1 orbital is enhanced, but not sufficiently developed to
induce dx2−y2 -wave superconductivity. Upon increasing the orbital splitting energy to ε = 2,
the AFM spin fluctuation for the τ = 1 orbital develops further, and orbital fluctuations are
completely suppressed, in comparison with the developed AFM spin fluctuation.

In figure 2, the phase diagram obtained within the FLEX approximation for the orbital
degenerate system are shown, where the solid and open circles describe the superconducting
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Figure 2. Phase diagram in the T –ε plane for U = U ′ = 4.0 obtained by the FLEX approximation.

(This figure is in colour only in the electronic version)

and AFM transitions respectively. The dotted curve is a schematic phase boundary expected
between the two phases. From figure 2, we can see that

(1) the spin-singlet superconducting phase with B1g symmetry appears next to the AFM phase
and

(2) Tc is enhanced with increasing orbital splitting energy ε.

From these observations, we can conclude that the superconducting phase is induced by the
development of the AFM spin fluctuations for the τ = 1 orbital with increasing orbital splitting
energy ε.

5. Summary and discussion

Let us now discuss the experimental results for CeTIn5 in comparison with the present
theoretical results. First we should note that in the actual tetragonal crystal, the four-fold
degenerate �8 states in the cubic notation split into two Kramers doublets, �7 and �6, as we
mentioned in the section 2. Therefore, in the tetragonal system, the j = 5/2 states split into
two �7 and one �6. Analyses of experimental data of magnetic susceptibility of CeTIn5 using
the CEF theory seem to be more consistent with the level scheme where two �7 are lower
than the �6 [14]. The energy splitting between the two �7 is estimated as 68 K for CeRhIn5,
61 K for CeIrIn5, and 151 K for CeCoIn5. According to the present analysis, higher Tc is
obtained for larger ε, consistent with the tendency in Tc of the two superconducting materials:
Tc = 0.4 K for CeIrIn5 and Tc = 2.3 K for CeCoIn5.

However, the antiferromagnetically ordered CeRhIn5 with TN = 3.8 K has an intermediate
value for ε. One possible scenario to help us understand the discrepancy is to consider the
difference in quasi-two dimensionality, as we have pointed out in [11]. To make more direct
and quantitative comparison with experimental results, however, one should be aware of an
assumption for the model used in the present study, which may be called a �8 model. Namely,
this �8 model assumes that �7 and �6 are the lower two Kramers doublets, which may be
different from the level scheme obtained from the experiments. Thus, it will be an interesting
problem for the future to elucidate the role of orbital splitting for the more realistic two �7

model, which includes not only nearest-neighbour hopping but also next-nearest-neighbour
hopping, and thus may reproduce the realistic electronic states better than the �8 model [15].
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In order to elucidate the whole story for CeTIn5 compounds, it may be necessary to use the
even more realistic f–p model including the f–p hybridization explicitly. In the f–p model, we
can have two different energy scales: the large energy scale is the band width for the conduction
electron and/or the Coulomb interaction,while the small energy scale corresponds to the energy
splitting of the CEF levels discussed here. The present study indicates the possibility that the
small energy scale of the CEF level splitting plays a key role as the controlling parameter of
quantum phase transitions.

In summary, based on the effective microscopic model with orbital degeneracy for
f-electron systems, we have proposed that the orbital splitting energy is the parameter
controlling the change from the paramagnetic to the AFM phase with the dx2−y2 -wave
superconducting phase in between. Actually, the self-consistent FLEX approximation applied
to the orbital degenerate model shows that the dx2−y2 -wave superconducting phase is induced
by increasing the orbital splitting energy.
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